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ABSTRACT
A large logical register file is important to allow effective

compiler transformations or to provide a windowed space of regis-
ters to allow fast function calls. Unfortunately, a large logical reg-
ister file can be slow, particularly in the context of a wide-issue
processor which requires an even larger physical register file, and
many read and write ports. Previous work has suggested that a reg-
ister cache can be used to address this problem. This paper pro-
poses a new register caching mechanism in which a number of
good features from previous approaches are combined with exist-
ing out-of-order processor hardware to implement a register cache
for a large logical register file. It does so by separating the logical
register file from the physical register file and using a modified
form of register renaming to make the cache easy to implement.
The physical register file in this configuration contains fewer
entries than the logical register file and is designed so that the
physical register file acts as a cache for the logical register file,
which is the backing store. The tag information in this caching
technique is kept in the register alias table and the physical register
file. It is found that the caching mechanism improves IPC up to
20% over an un-cached large logical register file and has perfor-
mance near to that of a logical register file that is both large and
fast.

1. BACKGROUND AND MOTIVATION
A large logical register file is a very important aspect of an

instruction set architecture because it allows significant opportu-
nity for compiler optimizations. Such optimizations have been
shown to eliminate memory operations and speed program execu-
tion. Specifically, a logical register file of 64 or more entries is
desirable to house locals, optimization temporaries, and global
variables [14]. Recent commercial architectures have underscored
the importance of a large logical register file as well [6]. More log-
ical registers can also enhance ILP by eliminating memory cache
operations, thus freeing the cache for more critical memory opera-
tions. The elimination of memory instruction reduces instruction
fetch and decode time. Other techniques such as register window-
ing require a large logical register file in order to eliminate spill/
reload traffic [12].

Unfortunately, any large register file with many read and
write ports is not practically implementable at clock speeds which
are marketable even if the performance advantage of the large file
is compelling at slower clock speeds. There have been a number of
proposals to circumvent this problem for large register files: either
by physically splitting the register file or by providing a cache of
the most frequently used registers and having a large backing store

for the full logical set of registers [5, 20, 21, 17]. The primary
observation that these caching proposals rely on is that register val-
ues have temporal and spatial locality. This is the same principle
that makes memory caches work.

A slightly different observation drives this work. Locality in
the rename register reference stream in an out-of-order micropro-
cessor is different than in the logical register reference stream
because renaming turns the incoming instructions into a single-
assignment program. No register is written more than once; this
means that a write breaks the locality for a given architected name.
Instead, the observation that we rely on for this work is that most
register values are produced and then consumed shortly thereafter:
around 50% of values are used so quickly that they can be obtained
from a bypass path instead of from the register file. Of the values
not obtained from a bypass path, many of them are available
within the instruction window, i.e. within the speculative storage of
the processor. Such values rarely even need to be committed to the
architected state because they will never be used again. Such com-
mits are termed “useless” by previous work, which reports that this
phenomenon occurs for 90-95% of values [8].

These facts suggested that we investigate how to implement a
large logical register file efficiently in the context of a superscalar
processor–a problem that previous work does not specifically
address. The result of our investigation is the subject of this paper.
The logical register file that we want to implement – 256 registers
– is so large that it is actually larger than most rename storage in
aggressive superscalar processors built today. The rename storage
is responsible for maintaining the storage of speculative values as
well as mappings that determine where the architected state of the
processor can be found. This immediately suggested that we view
the implementation’s smaller rename storage as a cache for the
larger architected register file, which would act as a backing store.
The goal of this design is to achieve the software performance of a
large and fast architected register file without having to pay the
hardware cost of implementing it. The cache is meant to reduce the
performance hit of the large logical register file.

Before continuing with the explanation of our implementa-
tion, we must review two other pieces of background information:
register renaming and what we call register architecture. Section 2
and Section 3 then describe the physical register cache mechanism
in more detail. Section 4 enumerates several of the advantages and
disadvantages of the proposal. Section 5 evaluates the proposed
mechanism by comparing it to a lower and upper performance
bound which have no register caching. Section 6 compares our
work to previous work in the area of register caching, and Section
7 concludes.

1.1. Register Renaming
In out-of-order superscalar processors, register renaming

decouples the logical register file of the instruction set architecture
from the implementation of the processor chip. The instruction set
may have 32 registers while the microarchitecture implements 80
“rename registers” in order to allow it to exploit instruction-level
parallelism by simultaneous examination of a large window of
instructions which have been transformed into a single-assignment
language to remove anti-dependencies and output dependencies.
These rename registers contain state which is speculative (because
of speculated branches, loads, etc.).
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Register renaming is implemented in several different ways in
commercial microprocessors. These designs are surveyed in detail
elsewhere [16] but we describe them briefly here.

One mechanism is called the merged register file, used in the
MIPS R10000 and Alpha 21264 processors [11, 19]. In this design,
the architected state and rename state are mingled in a single large
register file which we will call the physical register file. Both spec-
ulative and non-speculative state share the same storage structure
in this design. The register renaming and register release mecha-
nisms must be designed so that architected state is maintained in a
precise way.

The second implementation of register renaming is the split
register file. The architected state is kept separate from the specu-
lative state; each have their own register file and are updated
appropriately. This approach is used in the PowerPC 6XX and PA
8000 processors.

The third approach is similar to second in that the architected
state is separate from the speculative state, but the speculative state
is stored in the reorder buffer. This technique is used in the P6
(Pentium II and III) microarchitecture.

Though renaming decouples the rename storage from the log-
ical view of the architecture, the merged file approach is con-
strained in that it must implement more rename storage than there
are logical registers. We denote this condition by saying that NPR
> NLR must hold. Here, NPR is the number of physical (rename)
storage locations, and NLR is the number of logical registers in the
instruction set architecture. This constraint is most simply
explained by noting that the rename storage must have enough reg-
isters to contain all of the architected state plus some number of
registers to support speculative execution (the result of running
ahead of the architected state using branch prediction, etc.). Thus
the merged file approach does not take advantage of a complete
decoupling of the logical storage from the rename storage. 

This difficulty constrains the logical file to be smaller than the
physical file, a condition contrary to our initial desire, and
prompted us to consider a design which allows more complete
decoupling of the physical storage from the logical storage by
splitting the logical and physical value storage instead of merging
them. The next subsection explains another consideration that
makes this conclusion attractive.

1.2. Register Architecture
By the term register architecture, we mean the number and

configuration of registers need to support program execution. The
register architecture has two facets – one facet is the logical regis-
ter architecture, i.e. the number and configuration of registers sup-
ported in the instruction set. The other facet is the physical register
architecture, i.e. the number and configuration of registers in the
implementation.

The logical register file should be as large as desired by the
software that runs on the machine. Compiler optimizations have a
significant impact on the logical register architecture [15]. The
number of storage locations in the implementation, on the other
hand, is related to implementation technology, design complexity,
and desired machine capacity, factors which are decided long after
the instruction set has been fixed. The physical register file must
be matched to the characteristics of the design in order for the
design to be balanced, instead of being matched to the instruction
set architecture. These different requirements mean that strictly
decoupling their designs is advantageous to allow the designer to
maximize the performance of both the compiler and hardware
implementations.

We consider the split register file model of register renaming.
This decision was based on three factors: 1) the logical file is
larger than the physical file and thus has a natural backing-store to
cache relationship; 2) a merged approach to register renaming can-
not have more logical registers than physical registers (otherwise a
register-release deadlock could occur; 3) the design of the logical
file should be decoupled from the design of the physical storage to
allow the designer the most freedom to optimize each individually.
Advantages of this selection will be presented later.

1.3. The Physical Register Cache
The new  register caching technique that is introduced in this

paper allows a large logical register file to be implemented at a
realistic cost. It integrates a number of out-of-order processor hard-
ware elements and combines a number of features of previous
designs to arrive at a novel solution to the problem of building a
large logical register file. The generic model is shown in Figure 1.
It consists of the physical register file (PRF) which contains specu-
lative results and some non-speculative results (this is the rename
storage) and a logical register file (LRF) which contains precise
architected state at all times. The PRF will have as many registers
and ports as required in order to have a balanced execution engine;
the LRF will have as many ports as can be sustained within the
desired cycle time. Note that though the LRF may be much larger,
its access time may not be much worse than the PRF because it
will have fewer read and write ports. The other terminology that
we will use is described in Table 1.     

Instruction values committed by the processor to architected
state are committed from the final stage in the pipeline. This is to
avoid having to read the value out of the physical register file at
commit and is why there is no direct path in the diagram from the
PRF to the LRF. Alternatively, read ports could be added to the
PRF to allow committed values to be read from it and sent to the
LRF.

By design, the PRF is smaller than the LRF to allow for a fast
cycle time. The PRF caches recently computed results and main-

Table 1: Summary of terminology.

Term Meaning
LRF Logical (Architected) Register File

NLR Number of Logical (Architected) 
Registers

PRF Physical Register File (the cache)

NPR Number of Physical Registers

RAT Register Alias Table; maps logical 
registers to virtual registers

VRN Virtual Register Number

NVR Number of Virtual Registers

PRFV Physical Register Free Vector

Architected 
State

Committed, in-order, non-specula-
tive state of the processor, visible at 
the instruction set architecture inter-
face.

Fetch Decode Execute Write-
Back

Commit

Register
Renaming

Physical
Register
File

Logical
Register
File

Figure 1: The machine model considered in this paper.
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tains those values as long as possible. The cache contains the val-
ues most recently defined by the processor. In this way the
architected file can be large and somewhat slower while the
smaller physical file can have many ports to supply operands to the
function units quickly.

The  logical registers are mapped to the physical registers
through a third (larger) set of “registers” called the virtual register
numbers (VRNs). There is no storage associated with these VRNs,
which are used to avoid the register-release deadlock, to allow the
PRF to be directly indexed instead of associatively indexed, and to
allow the PRF (cache) to maintain the values after they are com-
mitted to the LRF.

2. REGISTER CACHE DESIGN
The innovation in this paper is the combination of four mech-

anisms: separate logical and physical register files, a physical reg-
ister file that is smaller than the logical file, renaming through a
larger set of virtual registers, and a simple indexing scheme that
maps the virtual numbers to physical registers. The combination of
these techniques are used to achieve several goals: to provide a
large logical register file that does not impact the speed of the pro-
cessor's critical path, to avoid deadlock conditions in register
assignment that are problems in previous work, and to provide an
efficient mapping from virtual number to physical register.

2.1. Microarchitecture Components
The major components in the microarchitecture are:

1. A large logical register file (LRF) which contains precise
architected state at all times. There is storage associated with
logical registers: there are NLR entries in the LRF. Values are
written to the logical register file at the time an instruction
commits to architected state.

2. A set of virtual register numbers (VRNs). There is no storage
associated with virtual registers: they are just numbers that
track data dependences and the location of data (physical or
logical register file) [3]. There are NVR virtual registers,
where NVR > NLR. The virtual registers are assigned such
that the low bits of the identifier index directly into the physi-
cal register file and the remaining high bits are called the
check tag. The purpose of the check tag will be explained
later. A VRN is allocated and deallocated as in the merged
renaming approach, described in Section 1.1.

3. A physical register file (PRF) which contains speculative val-
ues eventually destined for the logical register file. The PRF
also has value storage: it has NPR <= NLR entries. Values are
written to the physical register file after an instruction com-
putes its result.  A result register’s value is retained after its
producing instruction is committed to architected state until a
new value overwrites it. The PRF is directly indexed, unlike
in some previous work [2]. The physical register file also con-
tains tag bits (from the virtual register number check tag) to
verify that the requested value is present; otherwise the value
can be found in the logical register file because it was already
committed and overwritten by a later producer instruction.

4. A virtual number free list (VNFL) which contains the num-
bers of all virtual registers that are currently available for use.

5. A physical register free vector (PRFV) of NPR entries where
each bit represents whether the physical register is free to be
allocated.

6. A rename table (RAT) of NLR entries each of which contains
the virtual register number for the corresponding logical reg-
ister.

7. A busy bit table of NLR entries which contains a bit for each
logical register indicating whether it is presently being written
by an instruction in the pipeline. If the bit is clear, then the
value can be found in the logical register file. If set, there is a
producer instruction in the pipeline which will produce the
value at some future point.

8. A set of reservation stations. Each contains the following
fields, assuming two source operands for convenience of
explanation: a) dest virtual register; b) src1 ready bit; c) src1

source virtual register; d) src1 logical register number; e) src2
fields as for src1.

2.2. Design Constraints
There are several constraints that must be met by the design:

1. NPR < NLR. This is the basic assumption of the cache design
of the NPR.

2. NLR < NVR. This ensures no deadlock condition in renaming
since the rename register set is larger than the logical register
set [11].

3. Number of In-flight Instructions <= NPR. We limit the num-
ber of instructions to no more than the number of physical
registers. This ensures that each instruction has a unique slot
in the physical register file for its result. No two uncommitted
instructions can have the same physical index. In other words,
the number of instructions in flight cannot exceed the
machine’s capacity.

3. REGISTER CACHE OPERATION
This section describes the detailed operation of the caching

mechanism we propose. For this study, we chose the parameters
shown in Table 2.  

When an instruction arrives at the dispatch stage, the source
register operands are renamed based on the contents of the RAT as
in conventional renaming. Both the virtual register number from
the RAT and the logical register identifier are carried with the
instruction into the reservation station. No values are read from
any register file at this time. In this way, values are stored centrally
in either the logical or physical register file and are not duplicated
in the reservation station entries.

Each destination register in the instruction is assigned a vir-
tual register number from the free list as in conventional register
renaming. There is one difference: the physical register free vector
is also queried. No virtual register number whose (six) physical
index bits are currently in use can be chosen for allocation. This
additional constraint is necessary to ensure that no two instructions
share a physical index and is a necessary side-effect of the simple
mapping policy that is used to index the physical register file
(described later). This works without deadlock since the number of
virtual registers is larger than the number of logical registers. Once
a physical register number meeting this constraint is chosen, its
free bit in the PRFV is cleared to indicate that this physical register
has been “pre-allocated”. A register that is pre-allocated is marked
as being in use as a destination register. Our scheme allows the
value currently in that register to still be used by consumer instruc-
tions until the value is over-written. The relevant structures are
overviewed in Figure 2.

Two bookkeeping structures (not shown in the figure) allow
the processor to select an appropriate register. The physical register
free vector knows about all the free physical storage locations in
the system. Similarly, the virtual register free list does the same for
virtual registers. An autonomous register selection circuit can
examine this information, determine which virtual-physical pairs

Table 2: Register cache parameters used in this study.

Param Value Comment
NLR 256 The instruction set architecture 

allows 8 bits for each register speci-
fier.

NPR 64 From the machine capacity.

NVR 512 Since NVR > NLR must be true 
(constraint 2), we specify 9 bits of 
virtual register number. The low 6 
bits of this are used to index into the 
64 physical registers. The remain-
ing 3 bits are used as the check tag.
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are available for allocation, and put them onto a third list which the
processor then pulls from, in order, to rename the destination of an
incoming instruction. This list is not shown in Figure 2 but is
inside the register selection logic box. Essentially, the circuit is
looking for a virtual register whose six index bits describe a free
physical register. In our system, there are 64 physical registers and
512 virtual tags, so that for any physical register there are 8 possi-
ble virtual registers that can meet this criterion. The register selec-
tion circuit tries to find pairings where both are free. The register
selection circuit has flexibility to choose the registers according to
any policy that it likes and can effect different caching policies
“offline”. If there is no virtual register that qualifies for renaming,
the frontend of the processor stalls until one becomes available.

The newly renamed instruction is then dispatched and waits
in a reservation station until its operands  become ready. Readiness
is determined when a producer instruction completes and broad-
casts its virtual register number to the reservation stations. Each
station compares its unready source VRN with the virtual register
number broadcasted. If there is a match the source is marked ready.

At some point all the instruction's operands are ready and it is
scheduled (selected) for execution. The low 6 bits of its source
operand VRN are used to directly index into the 64-entry physical
register file. This simple indexing scheme constrains the initial
selection of the VRN (in the renaming pipeline stage) but greatly
simplifies the register access at this point. No associative search is
necessary.

The upper 3 bits of the VRN are used as the 3-bit check tag
whose function is to verify that the value currently in the physical
register comes from the correct producer. If the PRF entry has a
matching 3-bit check tag, then the value in the physical register is
taken as the source operand. If the tag does not match, the value no
longer resides in the PRF (like a cache miss) and must be fetched
from the LRF. This means that it was committed to architected
state some time ago and was evicted from the physical register set
by some other instruction with the same low 6 bits in its virtual
number. In the case where the value is not available from the phys-
ical register file, an extra penalty is incurred during which the
backing store (logical register file) is accessed. Our indexing
scheme does not allocate back into the cache upon a miss because
the value that would be allocated no longer has a VRN (it was
committed).

When the instruction issues to a function unit, it picks up the
necessary source operands, some from the LRF and some from the
PRF. The LRF access can be started in parallel with the PRF access
if there are enough ports on the LRF to support this. This is shown
in Figure 3, though this approach would require as many ports on
the LRF as on the PRF. Alternatively, the LRF can be accessed the
cycle after it is determined that the PRF did not contain the value.
This latter approach is used in our simulations. Since each physical
register could be accessed by multiple consumers in a single cycle,
multiple ports are required on the PRF, but this is no different than

other register file designs. Special scheduling logic, such as exists
on the Alpha 21264 to handle remote register reads, is necessary in
our system to handle the timing when a cache miss occurs.  

Immediately upon completion of execution, the (speculative)
data is written to the physical register file. It is written to the index
specified by the destination virtual register number. The check tag
at that location in the PRF is also updated with the 3-bit check tag
from the current instruction's virtual register number. This com-
pletes the allocation of the physical register for the current instruc-
tion. Any previous value that happened to be there is now
overwritten and its value must be accessed from the LRF. We
ensure that we do not overwrite a value which has not been com-
mitted yet because we require that no other in-flight instruction
share the same 6 bits in its virtual register number (by the way the
tags were selected). A write to the PRF always “write-allocates” its
result this way and never misses the cache because it is a first-time
write of a speculative value. It cannot be written to the LRF until it
is proven to be on the correct execution path.

The instruction then broadcasts its VRN to each reservation
station entry to indicate that the value is ready so that other instruc-
tions can be readied for execution (as in conventional systems).
The physical register file is updated and the result is forwarded
immediately to any consumers that require it. The virtual register
number allocation algorithm ensures that the instruction retains its
physical register at least until it commits to architected state.

Finally, the result of the instruction is carried down the pipe-
line into the reorder buffer. If this were not done, then the PRF
would need more read ports in order to read out values at the time
they are committed to the LRF.

When the instruction reaches the head of the instruction win-
dow and is able to commit, its value is written to the LRF (archi-
tected state) and the instruction is officially committed. The
physical register is marked as free for use by later instructions.
This is done by resetting the bit in the physical register free vector.
The value in the physical register file, however, remains until it is
absolutely necessary to overwrite it. This means that later consum-
ers can read from the physical register for some time until the
physical register is allocated to some other instruction. This evic-
tion scheme is not simply “least recently defined” but is instead
determined by when the next instruction that needs that register
completes execution.

Virtual register numbers are released in the same manner as
rename registers are released in a conventional, R10K style proces-
sor [19]. The virtual register number for logical register R1, for

Physical Register
Free Vector

Virtual Register
Free List

Logical Register
Number

Register
Selection
Logic

Register Alias Table
(RAT)

Virtual
Register
Number

9

Figure 2: The mechanism for renaming a destination 
register.

Physical Register File
(64 entries x 35 bits)

.

.

.

Tag Value

=?

01

(VRN)

.

.

.

Logical Register File
(256 entries x 32 bits)From 

(LRN)

To Control Logic Register Value

9

6

3

8

Reservation Station

Figure 3: Mechanism to access a register value from the 
cache or backing store.
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example, can be released when another virtual register number is
assigned to R1 (at the next definition of R1) and that definition is
committed. We call this the free-at-remap-commit condition. Vir-
tual register numbers have no associated storage, so we can specify
as many as needed in order to avoid stalling issue due to lack of
them. No early release mechanism is considered.

Because the LRF maintains precise architected register state
between each instruction in the program, recovery from exceptions
and branch mispredictions is simple. Instructions which are
younger than the excepting instruction are cleared from the
machine. Older instructions are retained. The logical to virtual
mappings are maintained as in previous work [19]. No entries from
the physical register file need to be destroyed because any consum-
ers that would have consumed bogus values have been cleared
from the machine, and the bogus values will just be overwritten at
some future point anyway. This has the advantage that useful val-
ues are retained in the physical file (even those that have already
committed); i.e. the cache is not destroyed even for a mispredicted
branch. Were this not the case, then the LRF would have to supply
all values initially after a branch misprediction; this would be slow
because the LRF will not have very many ports.

4. ADVANTAGES AND DISADVANTAGES
This design has many advantages, some of which are found in

previous work but integrated here into one system. These advan-
tages all arise from the main features of the design, namely the
split LRF and PRF, the large set of virtual register numbers, and
the way virtual numbers are mapped to physical registers using a
simple indexing scheme (which pre-allocates physical registers).
The advantages will be discussed in these categories.

4.1. Advantages of Split LRF and PRF
The split design allows the LRF to be large while keeping the

physical file small. This is the key to the cache-like behavior of the
PRF. At any point in time the LRF contains precise architected
state, making state maintenance easy, particular at points of mis-
speculation or other exceptional events. The logical register file
needs fewer ports because it only supplies values that have been
committed to architected state and that do not still reside in the
cache. It need not provide values that are supplied from the bypass
paths nor those from the (smaller and faster) PRF.

The split design also extends naturally to a register windowed
architecture where there can be a large number of logical registers
(hundreds) but where the PRF is desired to be smaller to speed
execution. This is feasible since only a subset of the logical regis-
ters (one or two windows), are ever active at any one time.

4.2. Advantages of Virtual Register Numbers
The mapping of logical register to physical register through

the virtual register numbers has a number of inherent advantages.
First, the approach avoids deadlock conditions that would exist in
a merged register logical/physical file where NLR >= NPR. The
“up-rename” from logical to virtual number has no deadlock prob-
lem. The subsequent “down-rename” does not have a deadlock
problem because the split physical and logical register files allow
physical registers to be freed as soon as their values are committed,
rather than waiting for future instructions to enter the machine.

The use of VRNs also mean that dependency tracking is sepa-
rated from physical value storage. Virtual numbers are used to
track dependencies while a separate PRF contains the values. This
advantage was first proposed in previous work [3, 4, 10]. The PRF
is sized according to the capacity of the machine, independent of
the size of the architected register file.

Virtual registers can be allocated in any order, and the order
that is selected can implement a caching policy by keeping certain
values in the physical register file longer after they commit than
other values. This means that a trade-off can be made between
machine capacity and value caching. In other words, some physi-
cal registers can be tied down to specific logical values so that
reads can be satisfied out of the cache. This reduces the number of
physical registers available for renaming but the increased PRF hit

rate may more than outweigh this problem, given that mispredic-
tions and other non-idealities effectively reduce the exploitable
window size anyway. Such a trade-off would obviously be more
applicable to a machine with a large number of physical registers,
i.e. a machine that can more easily afford such a reduction in phys-
ical registers.

4.3. Advantages of Direct-Mapped PRF
The simple mapping scheme from virtual to physical register

number also has a number of advantages. Extra cycles are not
required to access the physical register file. Previous work has
resorted to using a fully-associative physical register file, which
we believe is not feasible [2]. The only disadvantage of this
approach is that the physical register selection mechanism in the
renaming pipeline stage is somewhat complicated since it needs to
make sure that it assigns a virtual register whose physical register
is free. Thus it needs to make a lookup in both the virtual register
free list and the physical register free list.

Additionally, physical registers are pre-allocated as soon as
the instruction enters the machine to avoid complex mechanisms to
steal registers or reserve registers when machine capacity is over-
run [3, 4, 10].

Pre-allocation of physical registers is performed without
overwriting the previous value assigned to that physical register.
Actual allocation is not performed until the instruction completes
and writes back to the physical register file. This provides the
opportunity for older values to remain in the cache, satisfying con-
suming instructions faster than had the value been forced to reside
exclusively in the LRF after its own commit. The late allocation
feature of our approach also reduces the pressure on the physical
file.

Physical registers can be freed as soon as the value contained
is committed to architected state, unlike in other renaming configu-
rations where a later write to the same logical register is required in
order to free the register (like in the free-at-remap-commit mecha-
nism). Releasing a physical register is decoupled from the number
of consumer instructions in the processor because a physical regis-
ter can be freed and the consumer can still access the value from
the LRF. Previous techniques hang on to the physical registers
longer than this [11, 3] and thus could reduce the number of in-
flight instructions because of lack of available registers.

Even though the physical registers can be freed early, the PRF
can retain committed values until they are overwritten. This means
that, for example, branch mispredictions can be handled nicely
because values produced before the mispredict could still be valid.

4.4. Disadvantages
There are a number of features of the design which could be

problematic. We list them in this section.
1. The number of write ports on the LRF must match the commit

bandwidth of the machine in order to keep up with the
machine’s instruction graduation rate.

2. The RAT has as many entries as the (large) LRF. It must have
enough read and write ports to keep pace with instruction
decode. Each entry is only 9 bits wide and the structure is
direct mapped, which somewhat simplifies the task of making
it fast.

3. Our scheme always writes the value to the physical register
file upon completion instead of selectively caching it as in
previous work [2]. Values cannot be written to the backing
store (LRF) until the instruction is committed and we do not
consider any way to avoid caching values which are used on
the bypass network. We leave this for future work.

4. Before instruction execution can complete, the 3-bit physical
register check tag must be compared against the 3 upper bits
in the source VRN specifier. If the bits match, then the value
requested is the one actually residing in the PRF and execu-
tion can proceed uninterrupted. If there is not a match, then an
extra lookup must be made into the LRF to get the value,
which was previously committed. This adds extra complexity
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to the supply of operands to instructions, but the check can be
made in parallel with instruction execution.

5. EXPERIMENTAL EVALUATION

5.1. Experiment Setup
All the benchmarks used in this study were compiled with the

MIRV C compiler. We ran variants of the SPEC training inputs in
order to keep simulation time reasonable. A description of MIRV,
our compilation methodology, and benchmark inputs is presented
in our technical report [13].

All simulations were done using the SimpleScalar 3.0/PISA
simulation toolset [1]. We have modified the toolset (simulators,
assembler, and disassembler) to support up to 256 registers. Regis-
ters 0-31 are used as defined in the MIPS System V ABI [18] in
order to maintain compatibility with pre-compiled libraries. Regis-
ters 32-255 are used either as additional registers for global vari-
ables or additional registers for local caller/callee save variables.

All simulations were run on a subset of the SPEC95 and
SPEC2000 binaries compiled with inlining, register promotion,
global variable register allocation, and other aggressive optimiza-
tions for a machine with 256 registers, half set aside for locals and
half for globals.

We have implemented our register caching scheme on a vari-
ant of the sim-outorder simulator. The rename logic is dupli-
cated for the integer and floating point files, so each of the
descriptions below applies for each. The register cache simulator is
a stand-alone module which is hooked in several places into the
sim-outorder simulator.

Table 3 lists the register cache configurations used in our sim-
ulations. The latency numbers in the tables are the additional delay
(on top of whatever delay is simulated in the sim-outorder
simulator). All simulations use the register cache code with differ-
ent parameters to simulate the various configurations of interest.
The cached simulation is the one of interest in this work. It has a
256-entry LRF coupled with a 64-entry PRF. The LRF has an addi-
tional 1 cycle penalty for accessing it. The PRF has no additional
penalty. The other three configurations (Fast, Slow1, and Slow2)
are provided for comparison purposes. These are simulated with a
512-entry PRF so that the VRN to PR mapping is direct, with no
check bits, and an appropriate latency. In effect, each of these three
models always hits in the PRF and never needs to use the LRF.
“Fast” is a model of a 256 logical register file machine which has
no extra delay to access the registers. “Slow1” and “Slow2” are
similar but add 1 and 2 extra cycles, respectively, to the register
access to simulate the slower register file.

The remainder of the simulation parameters are common
across all simulations. The machine simulated is a 4-issue super-

scalar with 16KB caches; the parameters are used from sim-
outorder defaults except for two integer multipliers and 64
RUU entries. The default parameters are described in our technical
report [13]. The initial simulations assume an infinite number of
ports on each register file. Section 5.5 explores port constraints.

5.2. Results
This section describes the results of simulating our configura-

tions. Figure 4 shows the IPC for the 4 register configurations
mentioned above. The cached configuration approaches the perfor-
mance of the fast configuration in most cases. The Fast configura-
tion averages about 12% faster than the Slow1 while the cached
configuration is 11% faster. Thus the caching strategy is able to
recover most of the performance of the fastest configuration while
maintaining a small physical register file.

The first numeric column of Table 4 shows the hit rate of the
integer-side physical register file. In  every case, the hit rate is 80%
to 95%. Even the small cache is able to capture most of the register
activity. This is due to effects that have been reported previously,
namely that values are very frequently consumed very shortly after
they are produced. The hit rate includes all values that would be
bypassed or provided by the physical register file: in any case,
these are register references that do not have to access the large
LRF, so we deem them to be “hits.” Even if 50 out of 100 values
are provided by bypasses, 30 to 45 of the remaining 50 are pro-
vided by our cache–which is still a 60 to 90% hit rate. The floating
point hit rate is a bit higher, 85% to 95%.  

The register cache allows values to hang around until they are
overwritten by some later instruction; while the later instruction
has pre-allocated the register, the old value remains. This is advan-
tageous because the physical register is occupied with useful data
for a longer period of time than if the value were “erased” as soon
as it was committed to the LRF. All of the simulations presented so
far use this policy, which we call delayed allocation. We simulated
the go benchmark with and without this policy to model what
would happen if registers were allocated in a manner similar to

Table 3: Register cache simulation configurations

 Name NLR
LR 
Lat

NVR NPR
PR 
Lat

Fast 256 0 512 512 0

Cached 256 1 512 64 0

Slow1 256 0 512 512 1

Slow2 256 0 512 512 2

Figure 4: IPC of the four register configurations studied.
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current superscalar processors. This modification extends the
physical register busy time on the front end (before execution)
because it makes the register busy until the value is produced, even
though no useful value resides in that register. Turning off delayed
allocation increases the useless occupation time of the physical
register.

We found that when the delayed allocation was turned off, the
hit rate of the integer PRF decreased by about 2.6%. There was
also a slight decrease in IPC. This shows the delayed allocation
policy is making a difference though it is very slight. The  primary
reason for this is that most values are consumed quickly and the
extra time the value hangs around in the cache is not very profit-
able. It is probably easier to allow delayed allocation than to
aggressively kill values out of the register file, and since the latter
has no performance benefit.

On the back end (after commit), our scheme releases the reg-
ister as soon as the commit is completed. We cannot extend the
register busy time until the commit of the next value writing the
particular architected register because we would run out of physi-
cal registers (that is, as we said before, we cannot use a merged
renaming approach like the R10000).

5.3. Perfect Prediction, Caching, and TLBs
The absolute performance of the configurations in the previ-

ous section is somewhat attenuated by the heavy penalty of branch
prediction and cache misses. This section removes those con-
straints by simulating all the configurations with perfect caches,
perfect branch prediction, and perfect TLBs (denoted by the “perf”
suffix on the configuration names in the following graph). Our
goal is to determine what happens to the caching scheme as
improvements are made in other areas of the system. The figures in
this section show the results. 

Figure 5 shows the IPC of the four perfect configurations. It
can be seen that the IPCs have increased from the 1-1.5 range up to
the 2-3 range. The performance of go, for example, has tripled.
More interesting than the absolute performance increases produced
by the more ideal system is the trend in performance from the
Slow2 to Fast configurations of the register cache. Since a number
of the performance-attenuating features have been eliminated from
the microarchitecture, the gap between Slow2 and Fast has
increased. For example, whereas in the non-perfect simulations
Fast was 44% faster than Slow2, the perfect Fast configuration is
76% faster than Slow2. This points out the (somewhat obvious)
conclusion that as the other bottlenecks are removed from the sys-
tem, the register configuration makes a significant difference.  

The second numeric column of Table 4 shows the hit rate of
the integer physical register file for the perfect configuration.
These and the floating point numbers are essentially unchanged
from the non-perfect simulations, showing that the mechanism is
robust under different configurations. The only significant differ-
ence is found in the art benchmark, where it attains a 47% hit rate
as opposed to a 60% hit rate in the imperfect configuration.

5.4. Varying Cache Size
In our design, the PRF capacity is intimately related to the

other parameters in the machine, such that changing it requires
changing a number of other parameters as well. The cache size
should be determined by the desired machine capacity and perfor-
mance. For this reason and because of the large number of simula-
tions that would be required to examine a variety of cache sizes for
all of our benchmarks, we have limited the discussion to the go
benchmark. For each simulation, we changed the size of the cache
(for the cached configurations) and reduced the size of the instruc-

Table 4: Hit rate of the integer physical register file (cache) in
both normal and perfect configurations.

Benchmark Hit Rate Hit Rate (perf)
compress95 82% 83%

gcc95 91% 91%

go 82% 83%

ijpeg 90% 90%

li95 96% 95%

m88ksim 84% 83%

perl 93% 93%

vortex 91% 91%

ammp00 85% 86%

art00 60% 47%

equake00 85% 86%

mesa00 88% 88%

bzip200 82% 82%

gcc00 90% 90%

gzip00 86% 86%

mcf00 83% 82%

parser00 91% 91%

vortex00 91% 91%

vpr00 87% 88%

IPC of Various Caching Schemes - Perf
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Figure 5: IPC of the four perfect register configurations studied
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tion window (for all the configurations) to match the capacity of
the cache.

We simulated five cache sizes: 8, 16, 32, 64, and 128 entries,
and correspondingly-sized instruction windows. Generally speak-
ing, the Fast configurations are always better than the Cached con-
figurations which are in turn better than the Slow1, etc. However,
there are a couple of exceptions. The cached8 configuration is
slightly slower than the slow1-128, and the same as the slow1-64
configuration. This shows that more slow registers and a larger
instruction window is better than too few. Similarly, the fast8 con-
figuration is slower than all cached configurations except cached8.
Fast16 is much better. The indication in both of these exceptional
cases is that an 8-register cache and window size is simply insuffi-
cient to provide the best performance on go. The PRF hit rate
trends upward as the cache increases in size, from 65% up to 85%.
From the perspective of experimental design, this data does not tell
us much because too many parameters in the machine are changed:
it is difficult to determ ine the effect that each has on overall per-
formance. The tight integration of our caching model with the rest
of the superscalar hardware makes it impossible to untangle these
different parameters.

5.5. Varying Available Register Ports
The results above assume an infinite number of ports to both

register files. In this section we demonstrate what happens with
several different configurations of ports on the register files.

For these simulations, the number of read and write ports on
each register file restrict the flexibility of several portions of the
pipeline model. The read ports of both the LRF and PRF guide the
instruction scheduler so that it does not issue more instructions in a
cycle than there are register ports to supply operands. The sched-
uler is optimistic in that it examines all ready instructions and
starts selecting them for execution as long as the number of read
ports from the appropriate register file is not exceeded. It continues
through all ready instructions, perhaps skipping some that cannot
be issued due to high port utilization, until it issues as many as it
can, up to the issue width limit. The LRF write ports are used in the
commit stage of the pipeline, where if an instruction cannot com-
mit because of lack of LRF write ports, commit is stopped and the
remainder of the retiring instructions must be committed the next
cycle (or later). The PRF write ports are used in the writeback
stage of the pipeline to write results from the function units. Our
simulator assumes that the PRF must be able to sustain the write-
back bandwidth of as many instructions that can complete per
cycle. Therefore we do not restrict the PRF write ports.

There are minimum port requirements on each of the register
files. Both the PRF and LRF must have at least three read ports
each, since our simulator will only read the sources for an instruc-
tion in a single given cycle, and there are some instructions with
three source operands. This could be solved by taking several
cycles to read the operands, but we deemed it not necessary to sim-
ulate fewer than 3 read ports since most PRF designs should have
at least that many. Similarly, the simulator requires at least 2 write
ports on each register file since some instructions have two desti-
nation registers.

Figure 6 shows the results for all of the benchmarks studied in
this paper. The configurations are labeled with 4 numbers: the
number of PRF read and write ports and the number of LRF read
and write ports, respectively. Since we did not model limited write
ports on the PRF, we set them to 100. There is usually not much
performance degradation going from infinite ports to the minimum
number of ports on the LRF; however reducing the number of
ports on the PRF to the minimum does affect performance. From
the infinite port configuration to the most limited, performance is
reduced 2% up to 24%. The ijpeg and bzip benchmarks per-
form the worst with the limited port configuration. This is not sur-
prising since those two benchmarks have the highest average port
requirements (simulation results not shown). The art benchmark
produces the only unexpected result. This has been a difficult
benchmark through all of the studies because it has such terrible
overall performance. This is due to the very high data cache miss
rates–the L1 data cache misses 42% of the time; the unified L2
cache misses 48% of the time. These misses cause major backups
in the instruction window, so that it is full over 90% of the time.
The most limited cache configuration slightly changes the order
that instructions are run from the earlier configurations and thus it
is not surprising that there is a small perturbation in the perfor-
mance; in this case it is in the upward direction. The IPC is low
enough that the PRF is easily able to sustain the average require-
ments (1/2 an instruction per cycle can easily be accommodated by
3 read ports on the PRF).   

This data demonstrates that our technique is not hampered by
a limited number of ports on the LRF. This is because data values
are produced and then consumed shortly thereafter so that the
cache or bypassing logic can supply the values. Furthermore, the
out-of-order engine can tolerate the extra cycle incurred by a PRF
miss. The PRF port limited studies show that performance does not
really begin to degrade until the number of read ports is reduced to
5 or 4. In addition, we investigated the go benchmark over a larger
number of port configurations. Perfomance did not degrade until
the number of read ports on the PRF was reduced below 5.

Figure 6: The IPC of limited port configurations for SPEC2000.
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6. COMPARISON TO PREVIOUS WORK
The register cache is a hardware controlled mechanism for

making using of temporal locality of register reference [20, 21].
The register file is organized as a hierarchy with the operands sup-
plied from the uppermost (smallest and fastest) level. The lower
levels constitute backing storage for the full set of registers, not all
of which will simultaneously fit into the small upper level. Motion
between files is performed by the hardware based on recent usage
patterns.

This strategy is used in a recent proposal, called the “multi-
ple-banked register file,” where a mutli-level caching structure
with special caching and prefetching policies is used to implement
a large number of physical registers [2]. This work attempts to
cache the physical registers of a dynamically renamed micropro-
cessor in the context of a merged-file renaming mechanism,
despite the seeming lack of locality in the physical register refer-
ence stream (because of the “random” selection of physical regis-
ters from the free list). 

In that work, all values produced by the function units are
written to the physical register backing store; some of them are
written to the cache as well based on caching policies. There is no
dirty-writeback path from the cache to the backing store, so all val-
ues produced by the function units must be written to the backing
store during instruction writeback. In our work, only committed
values need to be written to the logical register file. This will
require somewhat less bandwidth than the previous approach since
the number of instructions committed is less than the number writ-
ten back.

Another disadvantage of the multiple-banked research is that
the physical register file, though small at 16 entries, requires a
fully associative lookup on all ports. Our work eliminates this inef-
ficiency by using a clever virtual-to-physical register indexing
scheme to allow the physical file to be direct mapped.

Hierarchical register files have also been proposed to allow
efficient implementation of large logical register sets. The register
file is separated into several regions, each in turn containing more
registers and having slower access time than the previous region
[17]. Placement of data is performed by the compiler with respect
to frequency of access while motion between files is explicitly
coded by the compiler.

The problem of large register files has been addressed in com-
mercial machines such as the Alpha 21264, which split its physical
register file into two copies, with a 1-cycle delay for updates from
one copy to another [5].

Other work attempts to reduce the number of physical regis-
ters required for a given instruction window size so that caching
techniques will not be necessary. One example is the virtual-physi-
cal register research which makes use of the observation that phys-
ical register lifetimes do not begin until instruction completion, so
that storage need not be allocated until late in the pipeline [3, 4,
10]. The delayed allocation of physical registers introduces a
potential deadlock where there may not be a physical register
available by the time an instruction commits. This is corrected by
reserving a number of physical registers for the oldest instructions
and sending younger instructions back for later re-execution if they
try to use one of the reserved registers. The technique was later
changed to handle this deadlock better by implementing a physical
register stealing approach [10]. Our approach avoids this deadlock
by separating the logical register file from the physical register file.

Our work is like the virtual-physical register approach in that
we actually allocate the physical register at instruction writeback,
though pre-allocation happens earlier. This proposal also frees the
physical register as soon as the instruction commits, which is the
earliest that any technique can do so. No merged file mechanism
can do this because the value storage must be retained until it is
certain that the value will never be needed again. Once the physi-
cal register is freed and the value is placed in the logical file, any
future consumers can access it from there. Even though the register
is freed, the value can sit in the physical register until some other
writer destroys it. This allows the value to sit in the cache for some
time after commit. Some previous work has considered earlier

deallocation of physical registers by using dead value information
which exploits the fact that the last use of a register can be used for
a deallocation marker instead of waiting for the next redefinition
[9, 7].

Figure 7 shows these differences in pictorial form. The clear
bar represents regions where the physical register is allocated but
does not contain a valid value. The black bar shows where the
physical register is allocated and must contain valid data (until a
new value is committed to architected state). The checked bar
shows the region where the physical register is pre-allocated but
does not contain data for the present instruction; it may contain
valid data from an older instruction. Finally the shaded arrow rep-
resents the region where the physical register is free to be allocated
to another instruction, yet it contains valid data from the previous
producer instruction, which consumers are free to use. Therefore,
the deallocate region overlaps the pre-allocate region for a later
instruction that will use the same physical storage location.

Our work differs from previous research in that it proposes to
use the physical register file itself as a cache for a large logical file
using a new register-renaming technique. Previous work is mainly
concerned with implementation of large physical register files
whereas we are mainly interested in implementing a large logical
register file.

The rename storage in previous superscalar designs could be
considered as a cache for the logical register file. However, if the
rename storage is larger than the architected storage, as it is in
many modern superscalar processors, the “cache” is bigger than
the backing store. In any case, our system is designed specifically
to cache a large set of registers provided in the ISA to the compiler.

7. CONCLUSIONS
We have presented an implementation of a large and fast logi-

cal register file by integrating register renaming with a physical
register file smaller than the logical one. This physical register file
serves as a cache for the logical register file as well as storage for
in-flight instructions. The renaming scheme is unique in several
ways. First, the physical register file is smaller than the logical file.
Second, the renaming scheme renames the logical registers to
physical registers through an intermediate set of virtual registers.
Third, the mapping function is constrained in such a way as to
ensure that the physical register file is direct-mapped instead of
fully associative as in previous approaches. This technique avoids
the register-release deadlock problem and also deadlock problems
of earlier virtual tagging schemes which had to reserve or steal reg-
isters to ensure that the program makes forward progress. The
caching mechanism provides an improvement of up to 20% in IPC

(a) Conventional Superscalar

(b) Virtual-Physical Registers

(c) Physical Register Cache

F CWBED

F CWBED

F CWBED

Figure 7: The lifetimes of physical registers in various 
schemes

Allocated, invalid data
Allocated, valid data
Pre-allocated
Deallocated, valid data
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over an un-cached large logical register file with conventional reg-
ister renaming. The hit rate of the physical register file on most
benchmarks is 80% or better.

The caching mechanism proposed here can be extended in a
number of directions. First, the proposal is amenable to modifica-
tions to effect caching policies on the physical registers through
careful allocation of virtual registers. Second, the caching mecha-
nism is a natural fit to be integrated with register windows for a
SPARC-like architecture. Another way our approach could be used
is to build an inexpensive superscalar implementation of a conven-
tional (32-register) logical file with an even smaller number of
physical registers, say 16, while using a direct-indexed physical
file instead of the associative ROB lookups used in earlier designs.

Finally, this approach could be useful on simultaneous multi-
threaded processors which require very large logical register files
to house the contents of the multiple thread contexts that are simul-
taneously live in the machine. Previous research has used a merged
register renaming scheme [7], which means that the physical regis-
ter file (which contains both architected and speculative state)
must be extremely large. For example, for 4 threads at 32 registers
each, the PRF would need to be larger than 128, and in particular it
would be 128 plus the maximum number of in-flight instructions.
Our technique could be used to implement a much smaller physical
register file.
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