Integrating Superscalar Processor Components to
Implement Register Caching

Matthew Postiff, David Greene, Steven Raasch, and Trevor Mudge
Advanced Computer Architecture Laboratory, University of Michigan
1301 Beal Ave., Ann Arbor, Ml 48109-2122
{postiffm, greened, sraasch, tnm}@eecs.umich.edu

ABSTRACT

A large logical register file is important to allow effective
compiler transformations or to provide a windowed space of regis-
tersto allow fast function calls. Unfortunately, a large logical reg-
ister file can be slow, particularly in the context of a wide-issue
processor which requires an even larger physical register file, and
many read and write ports. Previous work has suggested that areg-
ister cache can be used to address this problem. This paper pro-
poses a new register caching mechanism in which a number of
good features from previous approaches are combined with exist-
ing out-of-order processor hardware to implement a register cache
for alarge logical register file. It does so by separating the logical
register file from the physical register file and using a modified
form of register renaming to make the cache easy to implement.
The physical register file in this configuration contains fewer
entries than the logical register file and is designed so that the
physical register file acts as a cache for the logical register file,
which is the backing store. The tag information in this caching
techniqueis kept in the register alias table and the physical register
file. It is found that the caching mechanism improves IPC up to
20% over an un-cached large logica register file and has perfor-
][nance near to that of a logica register file that is both large and
ast.

1. BACKGROUND AND MOTIVATION

A large logical register file is a very important aspect of an
instruction set architecture because it allows significant opportu-
nity for compiler optimizations. Such optimizations have been
shown to eliminate memory operations and speed program execu-
tion. Specifically, a logical register file of 64 or more entries is
desirable to house locals, optimization temporaries, and global
variables [14]. Recent commercial architectures have underscored
the importance of alarge logical register file aswell [6]. More log-
ical registers can also enhance ILP by eliminating memory cache
operations, thus freeing the cache for more critical memory opera-
tions. The elimination of memory instruction reduces instruction
fetch and decode time. Other techniques such as register window-
ing require a large logical register file in order to eliminate spill/
reload traffic [12].

Unfortunately, any large register file with many read and
write portsis not practically implementable at clock speeds which
are marketable even if the performance advantage of the large file
iscompelling at slower clock speeds. There have been a number of
proposals to circumvent this problem for large register files: either
by physically splitting the register file or by providing a cache of
the most frequently used registers and having alarge backing store

Permission to make digital or hard copies of part or al of this work or
persona or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citdion on thefirst page. To copy otherwise, to
republish, to post on servers, or to redistribute to lists, requires prior
specific permission and/or afee.

ICS’ 01 Sorrento, Italy

© ACM 2001 1-58113-410-x/01/06 ...$5.00

348

for the full logical set of registers [5, 20, 21, 17]. The primary
observation that these caching proposalsrely onisthat register val-
ues have tempora and spatial locality. This is the same principle
that makes memory caches work.

A dlightly different observation drives this work. Locality in
the rename register reference stream in an out-of-order micropro-
cessor is different than in the logical register reference stream
because renaming turns the incoming instructions into a single-
assignment program. No register is written more than once; this
means that awrite breaks the locality for a given architected name.
Instead, the observation that we rely on for this work is that most
register values are produced and then consumed shortly thereafter:
around 50% of values are used so quickly that they can be obtained
from a bypass path instead of from the register file. Of the values
not obtained from a bypass path, many of them are available
within the instruction window, i.e. within the specul ative storage of
the processor. Such values rarely even need to be committed to the
architected state because they will never be used again. Such com-
mits are termed “useless” by previous work, which reports that this
phenomenon occurs for 90-95% of values [8].

These facts suggested that we investigate how to implement a
large logical register file efficiently in the context of a superscalar
processor—a problem that previous work does not specifically
address. The result of our investigation is the subject of this paper.
The logical register file that we want to implement — 256 registers
— is so large that it is actually larger than most rename storage in
aggressive superscalar processors built today. The rename storage
is responsible for maintaining the storage of speculative values as
well as mappings that determine where the architected state of the
processor can be found. This immediately suggested that we view
the implementation’s smaller rename storage as a cache for the
larger architected register file, which would act as a backing store.
The goal of this design is to achieve the software performance of a
large and fast architected register file without having to pay the
hardware cost of implementing it. The cache is meant to reduce the
performance hit of the large logical register file.

Before continuing with the explanation of our implementa-
tion, we must review two other pieces of background information:
register renaming and what we callegister architecture. Section 2
and Section 3 then describe the physical register cache mechanism
in more detail. Section 4 enumerates several of the advantages and
disadvantages of the proposal. Section 5 evaluates the proposed
mechanism by comparing it to a lower and upper performance
bound which have no register caching. Section 6 compares our
work to previous work in the area of register caching, and Section
7 concludes.

1.1. Register Renaming

In out-of-order superscalar processors, register renaming
decouples the logical register file of the instruction set architecture
from the implementation of the processor chip. The instruction set
may have 32 registers while the microarchitecture implements 80
“rename registers” in order to allow it to exploit instruction-level
parallelism by simultaneous examination of a large window of
instructions which have been transformed into a single-assignment
language to remove anti-dependencies and output dependencies.
These rename registers contain state which is speculative (because
of speculated branches, loads, etc.).

Register renaming isimplemented in several different waysin Table 1: Summary of terminology.
commercial microprocessors. These designs are surveyed in detail

elsewhere [16] but we describe them briefly here. Term Meaning
One mechanism is called the merged register file, used in the . : . .
MIPS R10000 and Alpha 21264 processors [11, 19]. In this design, LRF Logical (Architected) Register File
the architected state and rename state are mingled in asingle large NLR Number of Logical (Architected)
register filewhich wewill call the physical register file. Both spec- Registers
ulative and non-speculative state share the same storage structure)))
in this design. The register renaming and register release mecha- PRF Physical Register File (the cache)
Bir:cﬁ?;emvl\j:ybe designed so that architected state is maintained in a NPR Number of Physical Registers
The second implementation of register renaming is the split RAT Register Alias Table; maps logical
Iregi ster file. Theharlg:hitectﬁd state is kept sep]?rlate fré)m the sgec:d registers to virtual registers
ative state; each have their own register file and are updat - ;
appropriately. This approach is used in the PowerPC 6XX and PA VRN Virtual Register Numb.er
8000 processors. NVR Number of Virtual Registers
The third approach is similar to second in that the architected i i
state is separate from the speculative state, but the speculative state PRFY Physnc.al Reglster Free Vector
is stored in the reorder buffer. This technique is used in the P6 Architected Committed, in-order, non-specula-
(Pentium Il and 111) microarchitecture. State tive state of the processor, visible at
Though renaming decouples the rename storage from the log- the instruction set architecture inter-
ica view of the architecture, the merged file approach is con- face
strained in that it must implement more rename storage than there ’
are logical registers. We denote this condition by saying that NPR
> NLR must hold. Here, NPR is the number of physical (rename) Logical
storage locations, and NLR is the number of logical registersin the Register -
instruction set architecture. This constraint is most simply File
explained by noting that the rename storage must have enough reg- _
isters to contain all of the architected state plus some number of Physical
registers to support speculative execution (the result of running Eﬁg‘s‘e'
ahead of the architected state using branch prediction, etc.). Thus \
the merged file approach does not take advantage of a complete
decoupling of thelogical storage from the rename storage.
Thisdifficulty constrains thelogical file to be smaller than the
physical file, a condition contrary to our initia desire, and Write-)
prompted us to consider a design which allows more complete Fetch | Decode | Execte | gop - | Commit
decoupling of the physical storage from the logical storage by
splitting the logical and physical vaue storage instead of merging # f
them. The next subsection explains another consideration that :
makes this conclusion attractive. S??n‘?'ng

1.2. Register Architecture

By the term register architecture, we mean the number and Figure 1: The machine model considered in this paper.
configurati0r|11 of regist%rs need t? support progfram exechltioln. Thei
register architecture has two facets — one facet is the logical regis- . .
ter architecture, i.e. the number and configuration of registers sup-1-3- The Phys cal Reg|3ter Cache
ported in the instruction set. The other facet is the physical register The new register caching technique that is introduced in this
architecture, i.e. the number and configuration of registers in thepaper allows a large logical register file to be implemented at a
implementation. realistic cost. It integrates a number of out-of-order processor hard-

The logical register file should be as large as desired by theware elements and combines a number of features of previous
software that runs on the machine. Compiler optimizations have adesigns to arrive at a novel solution to the problem of building a
significant impact on the logical register architecture [15]. The large logical register file. The generic model is shown in Figure 1.
number of storage locations in the implementation, on the otherlt consists of the physical register file (PRF) which contains specu-
hand, is related to implementation technology, design complexity, lative results and some non-speculative results (this is the rename
and desired machine capacity, factors which are decided long aftestorage) and a logical register file (LRF) which contains precise
the instruction set has been fixed. The physical register file mustarchitected state at all times. The PRF will have as many registers
be matched to the characteristics of the design in order for theand ports as required in order to have a balanced execution engine;
design to be balanced, instead of being matched to the instructiorthe LRF will have as many ports as can be sustained within the
set architecture. These different requirements mean that strictlydesired cycle time. Note that though the LRF may be much larger,
decoupling their designs is advantageous to allow the designer tdts access time may not be much worse than the PRF because it
maximize the performance of both the compiler and hardware will have fewer read and write ports. The other terminology that
implementations. we will use is described in Table 1.

We consider the split register file model of register renaming. Instruction values committed by the processor to architected
This decision was based on three factors: 1) the logical file isstate are committed from the final stage in the pipeline. This is to
larger than the physical file and thus has a natural backing-store t@void having to read the value out of the physical register file at
cache relationship; 2) a merged approach to register renaming caneommit and is why there is no direct path in the diagram from the
not have more logical registers than physical registers (otherwise &PRF to the LRF. Alternatively, read ports could be added to the
register-release deadlock could occur; 3) the design of the logical PRF to allow committed values to be read from it and sent to the
file should be decoupled from the design of the physical storage toLRF.
allow the designer the most freedom to optimize each individually. By design, the PRF is smaller than the LRF to allow for a fast
Advantages of this selection will be presented later. cycle time. The PRF caches recently computed results and main-

349

tains those values as long as possible. The cache contains the val-

ues most recently defined by the processor. In this way the Table 2: Register cache parameters used in this study.

architected file can be large and somewhat slower while the Param | Value Comment
smaller physical file can have many portsto supply operands to the . - .
function units quickly. NLR 256 The instruction set architecture
The logica registers are mapped to the physical registers allows 8 bits for each register speci-
through a third (larger) set of “registers” called the virtual register fier.
numbers (VRNSs). There is no storage associated with these VRNSs, . .
which are used to avoid the register-release deadlock, to allow the NPR 64 From the machine capacity.

PRF to be directly indexed instead of associatively indexed, and to NVR 512
allow the PRF (cache) to maintain the values after they are com-
mitted to the LRF.

2. REGISTER CACHE DESIGN

The innovation in this paper is the combination of four mech-
anisms: separate logical and physical register files, a physical reg-
ister file that is smaller than the logical file, renaming through a
larger set of virtual registers, and a simple indexing scheme that
maps the virtual numbers to physical registers. The combination of
these techniques are used to achieve several goals: to provide a
large logical register file that does not impact the speed of the pro- . .
cessor's critical path, to avoid deadlock conditions in register 2.2. Design Constraints
assignment that are problems in previous work, and to provide an There are several constraints that must be met by the design:

Since NVR > NLR must be true
(constraint 2), we specify 9 bits of
virtual register number. The low 6
bits of this are used to index into the
64 physical registers. The remain-
ing 3 bits are used as the check tag.

source virtual register; d) srcl logical register number; e) src2
fields as for src1l.

efficient mapping from virtual number to physical register. 1. NPR < NLR. This is the basic assumption of the cache design
. . of the NPR.
2.1. Microarchitecture Components 2. NLR < NVR. This ensures no deadlock condition in renaming
The major components in the microarchitecture are: since the rename register set is larger than the logical register
1. A large logica register file (LRF) which contains precise set [11].

architected state at all times. There is storage associated with 3. Number of In-flight Instructions <= NPR. We limit the num-

logical registers: there are NLR entriesin the LRF. Values are
written to the logical register file at the time an instruction
commitsto architected state.

2. A set of virtual register numbers (VRNS). Thereis no storage
associated with virtual registers: they are just numbers that

ber of instructions to no more than the number of physical
registers. This ensures that each instruction has a unique slot
in the physical register file for its result. No two uncommitted
instructions can have the same physical index. In other words,
the number of instructions in flight cannot exceed the

track data dependences and the location of data (physical or
logical register file) [3]. There are NVR virtud registers,
where NVR > NLR. The virtua registers are assigned such
that the low bits of the identifier index directly into the physi-
ca register file and the remaining high bits are called the
check tag. The purpose of the check tag will be explained
later. A VRN is allocated and deallocated as in the merged
renaming approach, described in Section 1.1.

3. A physical register file (PRF) which contains speculative val -
ues eventually destined for the logical register file. The PRF
also has value storage: it has NPR <= NLR entries. Values are
written to the physical register file after an instruction com-

machine’s capacity.

3. REGISTER CACHE OPERATION

This section describes the detailed operation of the caching
mechanism we propose. For this study, we chose the parameters
shown in Table 2.

When an instruction arrives at the dispatch stage, the source
register operands are renamed based on the contents of the RAT as
in conventiona renaming. Both the virtual register number from
the RAT and the logica register identifier are carried with the
instruction into the reservation station. No values are read from
any register file at thistime. In this way, values are stored centrally

putes its result. A result register’s value is retained after its in either the logical or physical register file and are not duplicated
producing instruction is committed to architected state until a in the reservation station entries.
new value overwrites it. The PRF is directly indexed, unlike Each destination register in the instruction is assigned a vir-
in some previous work [2]. The physical register file also con- tual register number from the free list as in conventional register
tains tag bits (from the virtual register number check tag) to renaming. There is one difference: the physical register free vector
verify that the requested value is present; otherwise the valueis also queried. No virtua register number whose (six) physical
can be found in the logical register file because it was alreadyindex bhits are currently in use can be chosen for allocation. This
committed and overwritten by a later producer instruction. additional constraint is necessary to ensure that no two instructions
4. A virtual number free list (VNFL) which contains the num- share a physical index and is a necessary side-effect of the smple
bers of all virtual registers that are currently available for use. mapping policy that is used to index the physical register file
5. A physical register free vector (PRFV) of NPR entries where (described later). This works without deadlock since the number of
each bit represents whether the physical register is free to bevirtual registersislarger than the number of logical registers. Once
allocated. a physica register number meeting this constraint is chosen, its
6. A rename table (RAT) of NLR entries each of which contains freebit inthe PRFV iscleared to indicate that this physical register
the virtual register number for the corresponding logical reg- has been “pre-allocated”. A register that is pre-allocated is marked
ister. as being in use as a destination register. Our scheme allows the
7. A busy bit table of NLR entries which contains a bit for each value currently in that register to still be used by consumer instruc-
logical register indicating whether it is presently being written tions until the value is over-written. The relevant structures are
by an instruction in the pipeline. If the bit is clear, then the overviewed in Figure 2.
value can be found in the logical register file. If set, there is a Two bookkeeping structures (not shown in the figure) allow
producer instruction in the pipeline which will produce the the processor to select an appropriate register. The physical register
value at some future point. free vector knows about all the free physical storage locations in
8. A set of reservation stations. Each contains the following the system. Similarly, the virtual register free list does the same for
fields, assuming two source operands for convenience ofvirtual registers. An autonomous register selection circuit can
explanation: a) dest virtual register; b) srcl ready bit; c) srcl examine this information, determine which virtual-physical pairs

350

Physical Register Logical Register File
Free Vector > From (256 entriesx 32 bits)
i Reservation Station
Virtual Register Register 9 Virtual (VRN) (LRN)
FreeLigt — | Selection » Register Physical Register File
Logic Numiber (64 entries x 35 bits)
Logical Register Tag Value 9 8
Number .
6
Y
3
Register Alias Table
(RAT)
Figure 2: The mechanism for renaming a destination
register. i
1 0
are available for allocation, and put them onto athird list which the
processor then pulllsfrom,. in prdger, to rename the dqstlnatlon of an) Redister Valle
incoming instruction. This list is not shown in Figure 2 but is To Control Logic €9

inside the register selection logic box. Essentially, the circuit is

looking for a virtual register whose six index bits describe a free Figure 3: Mechanism to accessaregister value from the

physical register. In our system, there are 64 physical registers and cache or backing store.

512 virtual tags, so that for any physical register there are 8 possi-

ble virtual registers that can meet this criterion. The register selec- other register file designs. Special scheduling logic, such as exists
tion circuit tries to find pairings where both are free. The register on the Alpha 21264 to handle remote register reads, is necessary in
selection circuit has flexibility to choose the registers according to our system to handle the timing when a cache miss occurs.

any policy that it likes and can effect different caching policies Immediately upon completion of execution, the (speculative)

“offline”. If there is no virtual register that qualifies for renaming, data is written to the physical register file. It is written to the index
the frontend of the processor stalls until one becomes available. specified by the destination virtual register number. The check tag
The newly renamed instruction is then dispatched and waitsat that location in the PRF is also updated with the 3-bit check tag
in a reservation station until its operands become ready. Readineskom the current instruction's virtual register number. This com-
is determined when a producer instruction completes and broad-pletes the allocation of the physical register for the current instruc-
casts its virtual register number to the reservation stations. Eachtion. Any previous value that happened to be there is now
station compares its unready source VRN with the virtual register overwritten and its value must be accessed from the LRF. We
number broadcasted. If there is a match the source is marked readgnsure that we do not overwrite a value which has not been com-
At some point all the instruction's operands are ready and it ismitted yet because we require that no other in-flight instruction
scheduled (selected) for execution. The low 6 bits of its sourceshare the same 6 bits in its virtual register number (by the way the
operand VRN are used to directly index into the 64-entry physical tags were selected). A write to the PRF always “write-allocates” its
register file. This simple indexing scheme constrains the initial result this way and never misses the cache because it is a first-time
selection of the VRN (in the renaming pipeline stage) but greatly write of a speculative value. It cannot be written to the LRF until it
simplifies the register access at this point. No associative search igs proven to be on the correct execution path.
necessary. The instruction then broadcasts its VRN to each reservation
The upper 3 bits of the VRN are used as the 3-bit check tagstation entry to indicate that the value is ready so that other instruc-
whose function is to verify that the value currently in the physical tions can be readied for execution (as in conventional systems).
register comes from the correct producer. If the PRF entry has arhe physical register file is updated and the result is forwarded
matching 3-bit check tag, then the value in the physical register isimmediately to any consumers that require it. The virtual register
taken as the source operand. If the tag does not match, the value noumber allocation algorithm ensures that the instruction retains its
longer resides in the PRF (like a cache miss) and must be fetcheghhysical register at least until it commits to architected state.
from the LRF. This means that it was committed to architected Finally, the result of the instruction is carried down the pipe-
state some time ago and was evicted from the physical register sdine into the reorder buffer. If this were not done, then the PRF
by some other instruction with the same low 6 bits in its virtual would need more read ports in order to read out values at the time
number. In the case where the value is not available from the physthey are committed to the LRF.
ical register file, an extra penalty is incurred during which the When the instruction reaches the head of the instruction win-
backing store (logical register file) is accessed. Our indexing dow and is able to commit, its value is written to the LRF (archi-
scheme does not allocate back into the cache upon a miss becausected state) and the instruction is officially committed. The
the value that would be allocated no longer has a VRN (it was physical register is marked as free for use by later instructions.
committed). This is done by resetting the bit in the physical register free vector.
When the instruction issues to a function unit, it picks up the The value in the physical register file, however, remains until it is
necessary source operands, some from the LRF and some from thabsolutely necessary to overwrite it. This means that later consum-
PRF. The LRF access can be started in parallel with the PRF accessrs can read from the physical register for some time until the
if there are enough ports on the LRF to support this. This is shownphysical register is allocated to some other instruction. This evic-
in Figure 3, though this approach would require as many ports ontion scheme is not simply “least recently defined” but is instead
the LRF as on the PRF. Alternatively, the LRF can be accessed theletermined by when the next instruction that needs that register
cycle after it is determined that the PRF did not contain the value.completes execution.
This latter approach is used in our simulations. Since each physical Virtual register numbers are released in the same manner as
register could be accessed by multiple consumers in a single cyclerename registers are released in a conventional, R10K style proces-
multiple ports are required on the PRF, but this is no different thansor [19]. The virtual register number for logical register R1, for

351

example, can be released when another virtual register number is
assigned to R1 (at the next definition of R1) and that definition is
committed. We call this the free-at-remap-commit condition. Vir-
tual register numbers have no associated storage, so we can specify
as many as needed in order to avoid stalling issue due to lack of
them. No early release mechanism is considered.

Because the LRF maintains precise architected register state
between each instruction in the program, recovery from exceptions
and branch mispredictions is simple. Instructions which are
younger than the excepting instruction are cleared from the
machine. Older instructions are retained. The logical to virtua
mappings are maintained as in previous work [19]. No entries from
the physical register file need to be destroyed because any consum-
ers that would have consumed bogus values have been cleared
from the machine, and the bogus values will just be overwritten at
some future point anyway. This has the advantage that useful val-
ues are retained in the physical file (even those that have already
committed); i.e. the cacheis not destroyed even for a mispredicted
branch. Were this not the case, then the LRF would have to supply
al valuesinitialy after abranch misprediction; this would be slow
because the LRF will not have very many ports.

4. ADVANTAGESAND DISADVANTAGES

This design has many advantages, some of which arefound in
previous work but integrated here into one system. These advan-
tages all arise from the main features of the design, namely the
split LRF and PRF, the large set of virtual register numbers, and
the way virtual numbers are mapped to physical registers using a
simple indexing scheme (which pre-allocates physica registers).
The advantages will be discussed in these categories.

4.1. Advantages of Split LRF and PRF

The split design allows the LRF to be large while keeping the
physical file small. Thisisthe key to the cache-like behavior of the
PRF. At any point in time the LRF contains precise architected
state, making state maintenance easy, particular at points of mis-
speculation or other exceptiona events. The logical register file
needs fewer ports because it only supplies values that have been
committed to architected state and that do not still reside in the
cache. It need not provide values that are supplied from the bypass
paths nor those from the (smaller and faster) PRF.

The split design also extends naturally to a register windowed
architecture where there can be alarge number of logical registers
(hundreds) but where the PRF is desired to be smaller to speed
execution. Thisis feasible since only a subset of the logical regis-
ters (one or two windows), are ever active at any onetime.

4.2. Advantages of Virtual Register Numbers
The mapping of logical register to physical register through
the virtua register numbers has a number of inherent advantages.
First, the approach avoids deadlock conditions that would exist in
a merged register logical/physical file where NLR >= NPR. The

“up-rename” from logical to virtual number has no deadlock prob-
lem. The subsequent “down-rename” does not have a deadlock
problem because the split physical and logical register files allow
physical registers to be freed as soon as their values are committed,

rather than waiting for future instructions to enter the machine.

rate may more than outweigh this problem, given that mispredic-

tions and other non-idealities effectively reduce the exploitable

window size anyway. Such a trade-off would obviously be more

applicable to a machine with a large number of physical registers,
i.e. a machine that can more easily afford such a reduction in phys-
ical registers.

4.3. Advantages of Direct-M apped PRF

The simple mapping scheme from virtual to physical register
number also has a number of advantages. Extra cycles are not
required to access the physical register file. Previous work has
resorted to using a fully-associative physical register file, which
we believe is not feasible [2]. The only disadvantage of this
approach is that the physical register selection mechanism in the
renaming pipeline stage is somewhat complicated since it needs to
make sure that it assigns a virtual register whose physical register
is free. Thus it needs to make a lookup in both the virtual register
free list and the physical register free list.

Additionally, physical registers are pre-allocated as soon as
the instruction enters the machine to avoid complex mechanisms to
steal registers or reserve registers when machine capacity is over-
run [3, 4, 10].

Pre-allocation of physical registers is performed without
overwriting the previous value assigned to that physical register.
Actual allocation is not performed until the instruction completes
and writes back to the physical register file. This provides the
opportunity for older values to remain in the cache, satisfying con-
suming instructions faster than had the value been forced to reside
exclusively in the LRF after its own commit. The late allocation
ﬁature of our approach also reduces the pressure on the physical
ile.

Physical registers can be freed as soon as the value contained
is committed to architected state, unlike in other renaming configu-
rations where a later write to the same logical register is required in
order to free the register (like in the free-at-remap-commit mecha-
nism). Releasing a physical register is decoupled from the number
of consumer instructions in the processor because a physical regis-
ter can be freed and the consumer can still access the value from
the LRF. Previous techniques hang on to the physical registers
longer than this [11, 3] and thus could reduce the number of in-
flight instructions because of lack of available registers.

Even though the physical registers can be freed early, the PRF
can retain committed values until they are overwritten. This means
that, for example, branch mispredictions can be handled nicely
because values produced before the mispredict could still be valid.

4.4. Disadvantages

There are a number of features of the design which could be
problematic. We list them in this section.

1. The number of write ports on the LRF must match the commit
bandwidth of the machine in order to keep up with the
machine’s instruction graduation rate.

2. The RAT has as many entries as the (large) LRF. It must have
enough read and write ports to keep pace with instruction
decode. Each entry is only 9 bits wide and the structure is
direct mapped, which somewhat simplifies the task of making
it fast.

The use of VRNSs also mean that dependency tracking is sepa- 3. Our scheme always writes the value to the physical register

rated from physical value storage. Virtual numbers are used to
track dependencies while a separate PRF contains the values. This
advantage was first proposed in previous work [3, 4, 10]. The PRF
is sized according to the capacity of the machine, independent of
the size of the architected register file.

Virtual registers can be allocated in any order, and the order
that is selected can implement a caching policy by keeping certain
values in the physical register file longer after they commit than
other values. This means that a trade-off can be made between
machine capacity and value caching. In other words, some physi-
cal registers can be tied down to specific logical values so that
reads can be satisfied out of the cache. This reduces the number of
physical registers available for renaming but the increased PRF hit

352

file upon completion instead of selectively caching it as in
previous work [2]. Values cannot be written to the backing
store (LRF) until the instruction is committed and we do not
consider any way to avoid caching values which are used on
the bypass network. We leave this for future work.

. Before instruction execution can complete, the 3-bit physical

register check tag must be compared against the 3 upper bits
in the source VRN specifier. If the bits match, then the value
requested is the one actually residing in the PRF and execu-
tion can proceed uninterrupted. If there is not a match, then an
extra lookup must be made into the LRF to get the value,
which was previously committed. This adds extra complexity

IPC of Various Caching Schemes

2.50

@ 256_Slow 2
|' W 256_Slow 1
2.00 = [01256_Cached [
1 [00256_Fast
1.50 = I
O
o
1.00 1 H
0.50 H
0.00 L L L L1 1 L
») o el Q& N 4 S) N N Q Q O))) N
3 o S 4 O 2 2 & QS N N N N O Q Q N Q
& ¢ Y o ¥ F S F S NS ¢S
& o 4 N & <
&Qx S éb ,bg(\ 00‘\) & v) & < Qq;\ Ao{\

Figure 4: IPC of thefour register configurations studied.

to the supply of operandsto instructions, but the check can be
made in parallel with instruction execution.

5. EXPERIMENTAL EVALUATION

5.1. Experiment Setup

All the benchmarks used in this study were compiled with the
MIRV C compiler. We ran variants of the SPEC training inputs in
order to keep simulation time reasonable. A description of MIRV,
our compilation methodology, and benchmark inputs is presented
in our technical report [13].

All simulations were done using the SimpleScalar 3.0/PISA
simulation toolset [1]. We have modified the toolset (simulators,
assembler, and disassembler) to support up to 256 registers. Regis-
ters 0-31 are used as defined in the MIPS System V ABI [18] in
order to maintain compatibility with pre-compiled libraries. Regis-
ters 32-255 are used either as additional registers for global vari-
ables or additional registersfor local caller/callee save variables.

All simulations were run on a subset of the SPEC95 and
SPEC2000 hinaries compiled with inlining, register promotion,
global variable register alocation, and other aggressive optimiza-
tions for a machine with 256 registers, half set aside for locals and
half for globals.

We have implemented our register caching scheme on a vari-
ant of the si m out or der simulator. The rename logic is dupli-
cated for the integer and floating point files, so each of the
descriptions below appliesfor each. The register cache simulator is
a stand-alone module which is hooked in several places into the
si m out or der simulator.

Table 3 lists the register cache configurations used in our sim-
ulations. The latency numbersin the tables are the additional delay
(on top of whatever delay is simulated in the si m out or der
simulator). All simulations use the register cache code with differ-
ent parameters to simulate the various configurations of interest.
The cached simulation is the one of interest in this work. It has a
256-entry L RF coupled with a 64-entry PRF. The LRF has an addi-
tional 1 cycle penalty for accessing it. The PRF has no additional
penalty. The other three configurations (Fast, Slowl, and Slow?2)
are provided for comparison purposes. These are simulated with a
512-entry PRF so that the VRN to PR mapping is direct, with no
check bits, and an appropriate latency. In effect, each of these three
models always hits in the PRF and never needs to use the LRF.

Table 3: Register cache simulation configurations

LR PR

Name NLR Lat NVR NPR Lat
Fast 256 0 512 512 0
Cached 256 1 512 64 0
Slowl 256 0 512 512 1
Slow2 256 0 512 512 2

scalar with 16KB caches; the parameters are used $iom

out or der defaults except for two integer multipliers and 64
RUU entries. The default parameters are described in our technical
report [13]. The initial simulations assume an infinite number of
ports on each register file. Section 5.5 explores port constraints.

5.2. Reaults

This section describes the results of simulating our configura-
tions. Figure 4 shows the IPC for the 4 register configurations
mentioned above. The cached configuration approaches the perfor-
mance of the fast configuration in most cases. The Fast configura-
tion averages about 12% faster than the Slowl while the cached
configuration is 11% faster. Thus the caching strategy is able to
recover most of the performance of the fastest configuration while
maintaining a small physical register file.

The first numeric column of Table 4 shows the hit rate of the
integer-side physical register file. In every case, the hit rate is 80%
to 95%. Even the small cache is able to capture most of the register
activity. This is due to effects that have been reported previously,
namely that values are very frequently consumed very shortly after
they are produced. The hit rate includes all values that would be
bypassed or provided by the physical register file: in any case,
these are register references that do not have to access the large
LRF, so we deem them to be “hits.” Even if 50 out of 100 values
are provided by bypasses, 30 to 45 of the remaining 50 are pro-
vided by our cache—which is still a 60 to 90% hit rate. The floating
point hit rate is a bit higher, 85% to 95%.

The register cache allows values to hang around until they are
overwritten by some later instruction; while the later instruction
has pre-allocated the register, the old value remains. This is advan-

“Fast” is a model of a 256 logical register file machine which has tageous because the physical register is occupied with useful data
no extra delay to access the registers. “Slow1” and “Slow2” are for a longer period of time than if the value were “erased” as soon
similar but add 1 and 2 extra cycles, respectively, to the registeras it was committed to the LRF. All of the simulations presented so

access to simulate the slower register file.

far use this policy, which we calklayed allocation. We simulated

The remainder of the simulation parameters are commonthe go benchmark with and without this policy to model what
across all simulations. The machine simulated is a 4-issue superwould happen if registers were allocated in a manner similar to

353

IPC of Various Caching Schemes - Perf

3.50

[256_Slow 2perf
W 256_Slow 1perf

[0256_Cachedperf

3.00 1

2.50 +

[0256_Fastperf

2.00 +

IPC

1.50 +

1.00 +

Figure 5: IPC of thefour perfect register configurations studied

Table 4: Hit rate of theinteger physical register file (cache) ir
both normal and perfect configurations.

Benchmark Hit Rate Hit Rate (perf)
compress95 82% 83%
gcc9s 91% 91%
go 82% 83%
ijpeg 90% 90%
1i95 96% 95%
m88ksim 84% 83%
perl 93% 93%
vortex 91% 91%
ammp00 85% 86%
art00 60% 47%
equake00 85% 86%
mesa00 88% 88%
bzip200 82% 82%
gcc00 90% 90%
gzip00 86% 86%
mcf00 83% 82%
parser00 91% 91%
vortex00 91% 91%
vpro0 87% 88%

current superscalar processors. This modification extends the
physical register busy time on the front end (before execution)
because it makes the register busy until the valueis produced, even
though no useful value resides in that register. Turning off delayed
alocation increases the useless occupation time of the physical
register.

We found that when the delayed allocation was turned off, the
hit rate of the integer PRF decreased by about 2.6%. There was
also a slight decrease in IPC. This shows the delayed allocation
policy is making a difference though it is very slight. The primary
reason for this is that most values are consumed quickly and the
extra time the value hangs around in the cache is not very profit-
able. It is probably easier to allow delayed allocation than to
aggressively kill values out of the register file, and since the latter
has no performance benefit.

354

On the back end (after commit), our scheme releases the reg-
ister as soon as the commit is completed. We cannot extend the
register busy time until the commit of the next value writing the
particular architected register because we would run out of physi-
cal registers (that is, as we said before, we cannot use a merged
renaming approach like the R10000).

5.3. Perfect Prediction, Caching, and TLBs

The absolute performance of the configurations in the previ-
ous section is somewhat attenuated by the heavy penalty of branch
prediction and cache misses. This section removes those con-
straints by simulating al the configurations with perfect caches,
perfect branch prediction, and perfect TLBs (denoted by the “perf”
suffix on the configuration names in the following graph). Our
goal is to determine what happens to the caching scheme as
improvements are made in other areas of the system. The figures in
this section show the results.

Figure 5 shows the IPC of the four perfect configurations. It
can be seen that the IPCs have increased from the 1-1.5 range up to
the 2-3 range. The performancegd, for example, has tripled.
More interesting than the absolute performance increases produced
by the more ideal system is the trend in performance from the
Slow?2 to Fast configurations of the register cache. Since a number
of the performance-attenuating features have been eliminated from
the microarchitecture, the gap between Slow2 and Fast has
increased. For example, whereas in the non-perfect simulations
Fast was 44% faster than Slow2, the perfect Fast configuration is
76% faster than Slow2. This points out the (somewhat obvious)
conclusion that as the other bottlenecks are removed from the sys-
tem, the register configuration makes a significant difference.

The second numeric column of Table 4 shows the hit rate of
the integer physical register file for the perfect configuration.
These and the floating point numbers are essentially unchanged
from the non-perfect simulations, showing that the mechanism is
robust under different configurations. The only significant differ-
ence is found in thar t benchmark, where it attains a 47% hit rate
as opposed to a 60% hit rate in the imperfect configuration.

5.4. Varying Cache Size

In our design, the PRF capacity is intimately related to the
other parameters in the machine, such that changing it requires
changing a number of other parameters as well. The cache size
should be determined by the desired machine capacity and perfor-
mance. For this reason and because of the large number of simula-
tions that would be required to examine a variety of cache sizes for
all of our benchmarks, we have limited the discussion t@the
benchmark. For each simulation, we changed the size of the cache
(for the cached configurations) and reduced the size of the instruc-

Effect of Register File Ports on IPC

25

O cached64 @ p6-100-3-2
O p5-100-3-2 O p4-100-3-2

IPC
o
o [¢)] =

W p3-100-3-2
| .
Q

QO) Q Q \} Q Q N\ O
Q O Q Q N O Q Q Q QO
S @ KK Y L KL S
XX F R ¢ D @ & K
g F 9 ¢ &£ $
e Q S

Figure 6: The IPC of limited port configurationsfor SPEC2000.

tion window (for all the configurations) to match the capacity of
the cache.

We simulated five cache sizes: 8, 16, 32, 64, and 128 entries,
and correspondingly-sized instruction windows. Generally speak-
ing, the Fast configurations are always better than the Cached con-
figurations which are in turn better than the Slow1, etc. However,
there are a couple of exceptions. The cached8 configuration is
dlightly slower than the slow1-128, and the same as the slow1-64
configuration. This shows that more slow registers and a larger
instruction window is better than too few. Similarly, the fast8 con-
figuration is dower than all cached configurations except cached8.
Fast16 is much better. The indication in both of these exceptional
cases isthat an 8-register cache and window size is simply insuffi-
cient to provide the best performance on go. The PRF hit rate
trends upward as the cache increases in size, from 65% up to 85%.
From the perspective of experimenta design, this data does not tell
us much because too many parametersin the machine are changed:
it is difficult to determ ine the effect that each has on overall per-
formance. The tight integration of our caching model with the rest
of the superscalar hardware makes it impossible to untangle these
different parameters.

5.5. Varying Available Register Ports

The results above assume an infinite number of ports to both
register files. In this section we demonstrate what happens with
several different configurations of ports on the register files.

For these simulations, the number of read and write ports on
each register file restrict the flexibility of several portions of the
pipeline model. The read ports of both the LRF and PRF guide the
instruction scheduler so that it does not issue moreinstructionsin a
cycle than there are register ports to supply operands. The sched-
uler is optimistic in that it examines &l ready instructions and
starts selecting them for execution as long as the number of read
ports from the appropriate register file is not exceeded. It continues
through all ready instructions, perhaps skipping some that cannot
be issued due to high port utilization, until it issues as many as it
can, up to the issue width limit. The LRF write ports are used in the
commit stage of the pipeline, where if an instruction cannot com-
mit because of lack of LRF write ports, commit is stopped and the
remainder of the retiring instructions must be committed the next
cycle (or later). The PRF write ports are used in the writeback
stage of the pipeline to write results from the function units. Our
simulator assumes that the PRF must be able to sustain the write-
back bandwidth of as many instructions that can complete per
cycle. Therefore we do not restrict the PRF write ports.

355

There are minimum port requirements on each of the register
files. Both the PRF and LRF must have at least three read ports
each, since our simulator will only read the sources for an instruc-
tion in a single given cycle, and there are some instructions with
three source operands. This could be solved by taking severa
cyclesto read the operands, but we deemed it not necessary to sim-
ulate fewer than 3 read ports since most PRF designs should have
at least that many. Similarly, the simulator requires at least 2 write
ports on each register file since some instructions have two desti-
nation registers.

Figure 6 showsthe results for al of the benchmarks studied in
this paper. The configurations are labeled with 4 numbers: the
number of PRF read and write ports and the number of LRF read
and write ports, respectively. Since we did not model limited write
ports on the PRF, we set them to 100. There is usually not much
performance degradation going from infinite ports to the minimum
number of ports on the LRF; however reducing the number of
ports on the PRF to the minimum does affect performance. From
the infinite port configuration to the most limited, performance is
reduced 2% up to 24%. The i j peg and bzi p benchmarks per-
form the worst with the limited port configuration. This is not sur-
prising since those two benchmarks have the highest average port
requirements (simulation results not shown). Thear t benchmark
produces the only unexpected result. This has been a difficult
benchmark through all of the studies because it has such terrible
overall performance. This is due to the very high data cache miss
rates—the L1 data cache misses 42% of the time; the unified L2
cache misses 48% of the time. These misses cause major backups
in the instruction window, so that it is full over 90% of the time.
The most limited cache configuration slightly changes the order
that instructions are run from the earlier configurations and thus it
is not surprising that there is a small perturbation in the perfor-
mance; in this case it is in the upward direction. The IPC is low
enough that the PRF is easily able to sustain the average require-
ments (1/2 an instruction per cycle can easily be accommodated by
3 read ports on the PRF).

This data demonstrates that our technique is not hampered by
a limited number of ports on the LRF. This is because data values
are produced and then consumed shortly thereafter so that the
cache or bypassing logic can supply the values. Furthermore, the
out-of-order engine can tolerate the extra cycle incurred by a PRF
miss. The PRF port limited studies show that performance does not
really begin to degrade until the number of read ports is reduced to
5 or 4. In addition, we investigated the benchmark over a larger
number of port configurations. Perfomance did not degrade until
the number of read ports on the PRF was reduced below 5.

6. COMPARISON TO PREVIOUS WORK — Allocated, invalid data

The register cache is a hardware controlled mechanism for mmm A||ocated. valid data
making using of temporal locality of register reference [20, 21]. !
The register file is organized as a hierarchy with the operands sup- = Pre-allocated
plied from the uppermost (smallest and fastest) level. The lower == Dedllocated, valid data
levels constitute backing storage for the full set of registers, not all .
of which will simultaneously fit into the small upper level. Motion (a) Conventional Superscalar
between files is performed by the hardware based on recent usage

This strategy is used in a recent proposal, called the “multi-
ple-banked register file,” where a mutli-level caching structure . _ _
with special caching and prefetching policies is used to implement (b) Virtual-Physical Registers
a large number of physical registers [2]. This work attempts to

cache the physical registers of a dynamically renamed micropro- F D E |WB| C
cessor in the context of a merged-file renaming mechanism,
despite the seeming lack of locality in the physical register refer- —-

ence stream (because of the “random” selection of physical regis- () Physical Register Cache
ters from the free list).

In that work, all values produced by the function units are F D E |wB| C
written to the physical register backing store; some of them are
written to the cache as well based on caching policies. There is nc T —— -

dirty-writeback path from the cache to the backing store, so all val- . . A
ues produced by the function units must be written to the backing F19Ure 7: Thelifetimesof physical registersin various
store during instruction writeback. In our work, only committed schemes

values need to be written to the logical register file. This will) .
; m : : .- gdeallocation of physical registers by using dead value information
require somewhat less bandwidth than the previous approach SInCgvhich exploits the fact that the last use of a register can be used for

:gﬁ Egg?(ber of instructions committed is less than the number Wm_a deallocation marker instead of waiting for the next redefinition
: ; ; : 7].
Another disadvantage of the multiple-banked research is that[g’ . . S

the physical register file, though small at 16 entries, requires a, Figure 7 shows thesﬁ d|ﬁerr1enc¢ﬁs In pllctor_lal fo_rm.ﬁl’he Clear

fully associative lookup on all ports. Our work eliminates this inef- Par represents regions where the physical register is allocated but

ficiency by using a clever virtua-to-physical register indexing does not contain a valid value. The black bar shows where the

scheme to allow the physical file to be direct mapped physical register is allocated and must contain valid data (until a
: new value is committed to architected state). The checked bar

Hierarchical register files have also been proposed to allow ; . > :
it ; ; ; ; shows the region where the physical register is pre-allocated but
efficient implementation of large logical register sets. The register does not contain data for the present instruction: it may contain

file .ist separ%tek? into selveral regions,t.eactlki]n tutr# containing mqrer\r(alid data from an older instruction. Finally the shaded arrow rep-
registers and having slower access time than the previous regio . - : .
[17]. Placement of data is performed by the compiler with respect esents the region where the physical register is free to be allocated

; ; : ; . to another instruction, yet it contains valid data from the previous
E%J;%qggrtlﬁg gc]:n?;gﬁgrss while motion between files is explicitly producer instruction, which consumers are free to use. Therefore,

The problem of large register files has been addressed in Corn_the deallocate region overlaps the pre-allocate region for a later

mercial machines such as the Alpha 21264, which split its physicall"Struction that will use the same physical storage location.

' i : . ; Our work differs from previous research in that it proposes to
gen%ségwlteo'gtnoom’gr ‘ng'es' with a 1-cycle delay for updates from | . ;o physical register file itself as a cache for a large logical file

; ; i ister-renaming technique. Previous work is mainly
Other work attempts to reduce the number of physical regis- YSIN9 & New regis . C) .
ters required for a given instruction window size so that caching concemed with implementation of large physical register files

techniques will not be necessary. One example is the virtual-physi-VNereas we are mainly interested in implementing a large logical

i i ; ister file.
cal register research which makes use of the observation that phys€9'S . . .
ical register lifetimes do not begin until instruction completion, so The rename storage in previous superscalar designs could be

that storage need not be allocated until late in the pipeline [3, 4,considered as a cache for the logical register file. However, if the
10]. The gdelayed allocation of physical registers ICi)nICt)rodum[es a'ename storage is larger than the architected storage, as it is in
potential deadlock where there may not be a physical registermhany mkc_)dern superscalar processors, the “cache” is blgge_;_thﬁn
available by the time an instruction commits. This is corrected by (€ baﬁ 'n? store. In ?ny case, our %’Sée.m 'rsl deygne% speci 'C.Ia y
reserving a number of physical registers for the oldest instructionst® ¢ache a large set of registers provided in the ISA to the compiler.

and sending younger instructions back for later re-execution if they
try to use one of the reserved registers. The technique was Iate?' CONCLUSIONS . . .
changed to handle this deadlock better by implementing a physical e have presented an implementation of a large and fast logi-
register stealing approach [10]. Our approach avoids this deadlockc@ register file by integrating register renaming with a physical
by separating the logical register file from the physical register file. '€gister file smaller than the logical one. This physical register file
Our work is like the virtual-physical register approach in that S€fVes as a cache for the logical register file as well as storage for
we actually allocate the physical register at instruction writeback, in-flight instructions. The renaming scheme is unique in several
though pre-allocation happens earlier. This proposal also frees th&Vays- First, the physical register file is smaller than the logical file.
physical register as soon as the instruction commits, which is theS€cond, the renaming scheme renames the logical registers to
earliest that any technique can do so. No merged file mechanisnPPhysical registers through an intermediate set of virtual registers.
can do this because the value storage must be retained until it id hird, the mapping function is constrained in such a way as to
certain that the value will never be needed again. Once the physi€nsure that the physical register file is direct-mapped instead of
cal register is freed and the value is placed in the logical file, any fully associative as in previous approaches. This technique avoids
future consumers can access it from there. Even though the registefl€ register-release deadlock problem and also deadlock problems
is freed, the value can sit in the physical register until some otherOf €arlier virtual tagging schemes which had to reserve or steal reg-
writer destroys it. This allows the value to sit in the cache for someiSters to ensure that the program makes forward Progress. The
time after commit. Some previous work has considered earlier €aching mechanism provides an improvement of up to 20% in IPC

356

over an un-cached large logical register file with conventional reg- [8] Luis A. Lozano C. and Guang R. Gao. Exploiting Short-Lived

ister renaming. The hit rate of the physica register file on most Variables in Superscalar Processors. Proc. 28th Intl. Symp.
benchmarksis 80% or better. . Microarchitecture, pp. 292-302, Nov. 1995.
The caching mechanism proposed here can be extended in a [9] Milo M. Martin, Amir Roth, and Charles N. Fischer. Exploit-

number of directions. First, the proposal is amenable to modifica- ; ; ; .
tions to effect caching policies on the physical registers through L“h%tgﬁﬁ?e\fﬂnge'g%%r?agzg' Eé%% 30th Intl. Symp. Microar
careful allocation of virtual registers. Second, the caching mecha- ’ ' ' .
nism is a natural fit to be integrated with register windows for a [10] T. Monreal, A. Gonzalez, M. Valero, J. Gonzalez and V. Vi-

SPARC-like architecture. Another way our approach could be used nals. Delaying Physical Register Allocation through Virtual-
isto build an inexpensive superscalar implementation of a conven- Physical Registers. Proc. 32nd Intl. Symp. Microarchitecture,
tional (32-register) logical file with an even smaller number of pp. 186-192, Nov. 1999.
physical registers, say 16, while using a direct-indexed physical [11] M. Moudgill, K. Pingali and S. Vassiliadis. Register Renam-
fileinstead of the associative ROB lookups used in earlier designs. ing and Dynamic Speculation: An Alternative Approach. Proc.
Finally, this approach could be useful on simultaneous multi- 26th Intl. Symp. Microarchitecture (MICRO'93), pp. 202-213
threaded processors which require very large logical register files Dec. 1993 ’ '
to house the contents of the multiple thread contexts that are simul-)))
taneously livein the machine. Previous research has used a merged [12] David A. Patterson and Carlo H. Sequin. RISC I: A Reduced
register renaming scheme [7], which means that the physical regis- Instruction Set VLSI Computer. Proc. 8th Intl. Symp. Com-
ter file (which contains both architected and speculative state) puter Architecture, Vol. 32 No. CS-93-63, pp. 443-457. Nov.
must be extremely large. For example, for 4 threads at 32 registers 1981.
each, the PRF would need to be larger than 128, and in particular it [13] Matthew Postiff, David Greene, Charles Lefurgy, Dave
would be 128 plUS the maximum number of In-fllght instructions. Helder, Trevor Mudge_ The MIRV S|mp|eSCa|ar/P|SA Com-
Our technique could be used to implement amuch smaller physical piler. University of Michigan CSE Technical Report CSE-TR-
register file. 421-00, April 2000. Available at [22].
8. REFERENCES [14] Matthew Postiff, David Greene, and Trevor Mudge. Exploit-
]] ing Large Register Files in General Purpose Code. University
[1] Douglas C. Burger and Todd M. Austin. The SimpleScalar of Michigan Technical Report CSE-TR-434-00, October
Tool Set, Version 2.0. University of Wisconsin, Madison 2000. Available at [22].
Tech. Report. June, 1997. [15] Matthew Postiff. Compiler and Microarchitecture Mecha-
[2] Jose-Lorenzo Cruz, Antonio Gonzalez, Mateo Valero and Ni- nisms for Exploiting Registers to Improve Memory Perfor-
gel P. Topham. Multiple-Banked Register File Architectures. mance. Ph.D. Dissertation, University of Michigan. March
Proc. 27th Intl. Symp. Computer Architecture, pp. 316-325, 2001.
June 2000. [16] Dezso Sima. The Design Space of Register Renaming Tech-
[3] Aergfor:i/(_) ?glnzlglez_,stMateoPrValerlo,ﬂJOée Gfonﬁaleﬁ gneﬂT. Mon- niques. IEEE Micro, Vol. 20 No. 5, pp. 70-83. Sep/Oct 2000.
rea. virtua Regisiers. ryoc. int. Lont. Hign-rertormance [17] John A. Swenson and Yale N. Patt. Hierarchical Registers for
Computing, pp. 364-369, 1997. Scientific Computers. Proc. Intl. Conf. Supercomputing, pp.
[4] é'gltonig Gonzalez, Jose GonﬁalezI and Mateo Vhalerof. Virtual- 346-353, July 1988.
ysical Registers. Proc. 4th Intl. Symp. High-Performance [18] UNIX S : o .
: N 3 ystem Laboratories Inc. System V Application Binary
Computer Architecture (HPCA-4), pp. 175-184, Feb. 1998, Interface: MIPS Processor Supplement. Unix Press/Prentice
[5] Linley Gwenapp. Digital 21264 Sets New Standard. Micro- Hall, Englewood Cliffs, New Jersey, 1991.

pl)gc.)ce&sor Report, Vol. 10, No. 14. October 28, 1996, pp. 11- [19] Kenneth C. Yeager. The MIPS R10000 superscalar micropro-

6 Intel IA-64 Aoplication Devel Archi Guide. M cessor. IEEE Micro, Vol. 16 No. 2, pp. 28-40. April, 1996.
ntel I1A- ication Developer’s Architecture Guide. Ma . . .
R 1999. Orderpl\lcl)umber: 245188p-001. Available at http://devgl- [20] Robert Yung and Neil C. Wilhelm. Caching Processor General
oper.intel.com/design/iaé4/devinfo.htm. Registers. Intl. Conf. Computer Design, pp. 307-312, Oct,

1995.
7] Jack L. Lo, Sujay S. Parekh, Susan J. Eggers, Heny M. Levy, : . :
g Dean M. Tullsén}./Software-Directed Regigs%er DeaIIo)éation for)'/ [21] Robert Yung and Neil C. Wilhelm. Caching Processor General

Simultaneous Multithreaded Processors. IEEE Transactions Redisters. Sun Microsystems Laboratories Tech. Report. June,

on Parallel and Distributed Systems, Vol. 10, No. 9, Septem- ~ +99°-
ber 1999, pp. 922-933. [22] http://lwww.eecs.umich.edu/mirv.

357

